

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-143895

Shared and Distributed
Memory Parallelization of a
Lagrangian Atmospheric
Dispersion Model

David J. Larson, and J. S. Nasstrom

This article was submitted to Atmospheric Environment

May 11, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

1

Shared and Distributed Memory Parallelization of a Lagrangian Atmospheric
Dispersion Model

David J. Larson and John S. Nasstrom
Atmospheric Science Division
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, California 94551-0808, USA

Abstract

This paper describes parallelization of a 3-D Lagrangian stochastic atmospheric
dispersion model using both distributed- and shared-memory methods. Shared-memory
parallelism is implemented through the use of OpenMP compiler directives. Distributed-
memory parallelism relies on the MPI message-passing library. One or both of the
parallel modes can be used depending upon the requirements of the problem and the
computational platform available. The distributed-memory version achieves a nearly
linear decrease in execution time as the number of processors is increased. As the
number of particles per processor is lowered, performance is limited by the decrease in
work per processor and by the need to produce one set of output files. The shared-
memory version achieves a speed-up factor of approximately 1.4 running on machines
with four processors.

Key word index: Parallel processing, atmospheric dispersion, random walk dispersion
model, OpenMP, MPI.

Introduction

The Lagrangian Operational Dispersion Integrator (LODI) is an atmospheric dispersion
model developed for emergency response within the U.S. Department of Energy s
National Atmospheric Release Advisory Center, NARAC (Nasstrom et al., 2000). It
solves the three dimensional advection-diffusion equation using a Lagrangian stochastic,
Monte-Carlo method. A large number of independent particle trajectories are calculated
and a contaminant air concentration is estimated from the spatial distribution of the
particles at a particular time. LODI simulates a variety of physical processes including
mean wind advection, turbulent diffusion, radioactive decay, first-order chemical
reactions, wet deposition, gravitational settling, dry deposition, and buoyant or
momentum dominated plume rise within the Lagrangian stochastic approach. LODI is a
Fortran90 code and makes extensive use of the modern features available in this
language, including array syntax, derived types, modules, pointers, and generic
procedures.

Two considerations drove the parallel implementation of LODI. The first, not
surprisingly, is execution speed. LODI runs in an operational environment so producing
detailed high-resolution results as quickly as possible is critical to the emergency

2

response community served by NARAC. A second factor concerns prognostic plume
dispersion calculations for scenario analysis. The regional weather forecasts that provide
meteorological data to LODI can be improved using the techniques of ensemble
forecasting. Ensemble forecasts explore the range of possible outcomes and provide a
measure of the uncertainty associated with a single deterministic forecast (Toth and
Kalnay, 1993; Sivillo, Ahlquist and Toth, 1997). Multiple LODI runs will be required to
determine the different plume dispersion patterns generated from each member of the
forecast ensemble. Thus execution speed is again a critical factor.

Luhar and Modi (1992) describe the implementation of parallel processing in a
Lagrangian stochastic model that simulates vertical dispersion in the convective boundary
layer. They note the inherently parallel nature of Lagrangian random-walk dispersion
models and achieve a 14-fold improvement in execution time using 4096 processors in a
SIMD (single instruction multiple data) machine of unique architecture using a non-
standard, proprietary version of Fortran. In contrast, the work described below uses
Fortran90, the standard message-passing interface MPI (Gropp, Lusk, and Skjellum;
1994), and the emerging standard for shared-memory processors, OpenMP (OpenMP
Architecture Review Board, 2000), to produce a portable code with excellent scaling
properties that runs on modern MIMD (multiple instruction multiple data) computers.

Numerical Model

LODI solves the following three-dimensional advection-diffusion equation:

Q

C

C
z
C

w

z

C
K

zy

C
K

yx

C
K

x

z

C
w

y

C
v

x

C
u

t

C

s

zyx

+
−

Λ−
∂
∂+








∂
∂

∂
∂+





∂
∂

∂
∂+







∂
∂

∂
∂+

∂
∂−

∂
∂−

∂
∂−=

∂
∂

λ

 (1)

where C is the mean air concentration of a species (e.g., units of kg m—3), vu , and w are

the mean wind components (e.g., m s—1) and ,, yx KK and zK are the eddy diffusivities

(e.g., m2 s—1) in the x, y, and z directions, respectively, sw is the absolute value of the

gravitational settling velocity (e.g. m s—1), Λ is the precipitation scavenging coefficient
(e.g., s—1),λ is the decay constant for radioactive decay or the rate constant for a first-
order chemical reaction (additional terms are used for growth of due to decay from parent
nuclides), and Q is the source term (e.g., kg s—1 m—3). This is a conservation of species
equation utilizing gradient diffusion theory (K theory) to model the turbulent flux of the

3

species. The mean wind components, vu , and w , and the eddy diffusivities, ,, yx KK

and zK , are meteorological fields residing on three-dimensional grids. The source term Q
in Eq. (1) is specified using the parameters for the source geometry (initial spatial
distribution of source material at any given time) and the total source material emission
rate (mass or activity released per unit time).

The process described by the diffusion equation (1) can also be described by a stochastic
differential equation in a Lagrangian reference frame (Durbin, 1983; Boughton,
Delaurentis, and Dunn, 1987). For example, the equation for the displacement of a fluid
particle in the vertical direction, may be written as follows:

(2)

where dW is a random variate with zero mean and variance dt, i.e.,

and is uncorrelated in time, i.e.,

.

An overbar, , represents the ensemble average of a quantity. The form of
the independent stochastic differential equations for the displacements in the x and y
directions are identical with the exceptions that the terms with the spatial derivative of the
eddy diffusivities Kx and Ky are assumed to be negligible and there is no contribution of
the gravitational settling speed to the displacement. These equations describe the
ensemble of possible particle trajectories. Each trajectory represents one realization. Time
integration of Eq. (2), and the corresponding horizontal equations, provides a means to

4

calculate the trajectory of a particle, given its initial position. This
provides a basis for Lagrangian, Monte Carlo numerical simulations in which a sample of

N independent particle trajectories, , originating from a source are used to

estimate the probability density function for the particle position at time t, and, given the
spatial and temporal distribution of species mass emitted from the source, to estimate the
ensemble mean concentration ()tzyxC ,,, .

LODI solves Equation (2) using the methods described by Leone, et al. (1997) and
Ermak and Nasstrom (2000). Particle displacements due to the mean wind are calculated
using either second- or fourth-order Runge-Kutta methods (Leone et al., 1997). The
displacement of a particle due to turbulent diffusion is calculated using a skewed, non-
Gaussian particle position probability density function (Ermak and Nasstrom, 2000).
Diffusive displacements are determined by random sampling from this function. This
non-Gaussian method is of higher order in time than a previously used Gaussian method.
Ermak and Nasstrom (2000) compared numerical simulation results to analytic solutions
of the diffusion equation, and showed that their method is significantly more efficient
than using a Gaussian particle position distribution.

The general algorithm for the LODI code is:
1) Initialization: read in grid coordinates for meteorological data and

concentration/deposition data, read in meteorological data, initialize source
variables.

2) Advance particles in time: determine time-step for each particle, calculate the
diffusive displacement, and calculate displacement due to advection by the mean
wind.

3) Calculate particle contributions to gridded air concentration and ground
deposition fields.

4) Generate output
Note that step (2) can also include calculating radioactive growth and decay, the
gravitational settling velocity, buoyant and momentum-dominated plume rise, dry
deposition, as well as precipitation scavenging.

Distributed Memory Parallelism

LODI is well suited to the distributed memory parallel model due to the independence of
individual particle trajectories. On a distributed memory computer each processor, or
central processing unit (CPU), has its own dedicated computer memory. We distribute the

5

simulation particles across the processors in an ordered way. The first particle is
assigned to the first processor, particle two to the second processor, and so on until the
Nth particle is assigned to the Nth processor. Further particles start the cycle over so
particle number N+1 is assigned to the first processor, N+2 to the second and so on.

Each processor has a complete copy of the gridded meteorological data and the grids
required to calculate the various contaminant concentrations requested by the user. A grid
is used to define the sampling volumes over which the concentrations are calculated. The
time-integrated (and time-average) concentration is calculated by using the contaminant
mass associated with a particle and the time spent in the sampling volume, summing over
all particles passing through the sampling volume. Particle contributions to time-
integrated and time-averaged gridded concentrations are calculated separately on each
processor. However, at time intervals specified by the user, concentration contributions
from particles on all processors must be assembled, either for output or for determining
the peak time-average concentration within user-specified averaging time intervals in
between output times. Calculating the peak average concentration requires assembling all
concentration information on one processor at the end of each averaging time. This is
accomplished by passing the concentration information to the first processor using MPI
routines to send and receive data. Global reductions, which combine values from all
processors and distribute the result back to all processors, are also used in order to
determine the number of active simulation particles and the total mass released on
particles for simulation status reporting and error checking. In order to minimize the
number of output files, concentration and particle data from all processors are shipped to
the root processor for output at user-specified intervals.

In addition to distributing particles across the processors, individual processors must have
independent random number streams in order achieve independence of all particle
trajectories in a simulation. There is a vast literature on parallel random number issues,
for examples see Percus and Kalos (1989) and De Matteis and Pagnutti (1995). We
implemented a combination generator by Wollan (1992) in LODI that achieves distinct
random number streams through a congruential component and a long period ()2510
through a Fibonacci component. The method is portable, consisting of a self-contained
Fortran90 module, and is useful for up to one thousand processors.

The problem size that the distributed memory version of LODI can run is limited by the
memory available to each processor. The IBM ASCI (Accelerated Strategic Computing
Initiative) Blue machine at Lawrence Livermore National Laboratory has four processors
per node sharing up to two and one half gigabytes of memory. Since each processor has
a complete copy of all the meteorological and concentration grid data, using all the
processors on a node results in four copies of these data being stored on the node. This
puts an upper bound on the problem size one can run while maximizing the system
resources by using all the processors on a node.

Shared Memory Parallelism

6

As an alternative to the distributed memory implementation, a shared memory version of
LODI was also developed. On a shared memory computer all processors use the same
memory. We use the OpenMP application program interface to achieve shared memory
parallelism (OpenMP Architecture Review Board, 2000). OpenMP supports a fork-join
model of parallel execution through the use of compiler directives, library routines, and
environment variables. In the fork-join model a single process, known as the master
thread, executes the program sequentially until it encounters a parallel directive. The
master thread then creates a team of threads that execute the specified code in parallel.
Upon completion of the parallel region, the thread team synchronizes and only the master
thread continues execution.

In order to make effective use of OpenMP compiler directives, the main time-step loop in
LODI was written to perform each particular computation (e.g., calculating the diffusive
displacement) for a block of particles at a time, before proceeding to the next
computation (e.g., determining the mean wind advection velocity at the particle position).
OpenMP supports fine-grained parallelism in which the work associated with each loop
can be spread across multiple processors. In a typical LODI run approximately eighty
five percent of the run time is spent in the subroutine that updates the particle position, so
the majority of the shared memory parallelism occurs in this routine. This routine
calculates the plume rise velocity, the gravitational and dry deposition velocities, the
precipitation scavenging coefficient, the time step restrictions due to the grid cell size, the
horizontal and vertical eddy diffusivities, the diffusive displacement and the displacement
due to the mean wind advection. The number of particles comprising a particle block can
be varied in order to obtain maximum performance on today s cache-based computer
architectures. Table 1 gives performance results for a test problem run with fifty
thousand simulation particles using four threads.

Based on these results, we typically set the number of particles per block to 501. This
choice yields good results on our suite of test problems run on both the ASCI Blue
machine and the NARAC Compaq Alpha systems.

Eleven out of a total of fourteen major loops in the particle position subroutine were
amenable to parallelizaton by OpenMP compiler directives. Several of the remaining
loops had potential memory conflicts due to the use of pointers that depend on the value
of the loop index. OpenMP directives were also used in a few loops in the main LODI
control routine.

Table 1: Execution time as a function
of the number of particles per block.

Number of particles
per block

Time (s)

32 510
128 312
512 267

2048 287

7

8192 290

The use of shared memory parallelism should allow a larger problem to fit on a
computational node since only one copy of the meteorological and concentration grid
data is required per node. As the results in the following section demonstrate, the parallel
efficiency of the OpenMP version is not as high as that of the MPI version. However,
higher spatial resolution simulations may require the use of the shared memory version of
LODI.

Results

Figure 1 shows the run time on the ASCI Blue machine at LLNL versus number of
processors for a benchmark problem run with fifty thousand particles. The squares are
the MPI LODI results and the line denotes linear scaling, determined by dividing the
execution time for a single processor run by the corresponding number of processors.

As expected, LODI nearly achieves the optimum of linear speed up as long as the load
per processor overcomes the latency resulting from inter-processor communication. As
the number of processors increases, the results demonstrate the well known fall off in
parallel efficiency as the computational load per processor is reduced. The efficiency
increases at the higher end of the scale when more particles are used (not shown).

Results for running the benchmark problem using one million simulation particles are
shown in Table 2. Here we define speedup as the ratio of the execution time for the
baseline case to the execution time for a given test case. The OpenMP standard allows
you to specify how the loop iterations are divided (scheduled). Among the threads OMP
guided refers to the OpenMP version of LODI using the guided schedule, which divides
the loop iterations among the threads so that the size of each successive piece is
exponentially decreasing. There are a variety of choices for the scheduling directive — we
chose guided because it produced the best results in our implementation. The MPI
overhead referred to above is a small performance penalty incurred on the IBM ASCI
Blue machine when running an MPI code on all four CPUs within a given node
compared to using one processor per node and four nodes. The intra-node processor
communication is slightly less efficient than inter-node communication due to the
machine architecture. However, this penalty is not large enough to justify wasting CPU
cycles by using only one processor per node. The OpenMP version running with four
CPUs is limited to a speedup of about 1.4 due to the limited number of loops benefiting
from parallel execution. If perfect parallel execution of the position update subroutine
could be achieved, a speedup of about 2.75 would be expected, based on dividing the
time spent in this subroutine by four and comparing the total run time with the baseline
case.

Table 2: Execution time for the shared- and distributed-memory parallel versions of
LODI for several test cases

Test case Time (s) Comments

8

Baseline case, 1 node, 1CPU 3920.
MPI, 4 nodes, 4 CPUs 987. MPI speedup = 3.97
MPI, 1 node, 4 CPUs 1007. Pure MPI overhead = 2%
OMP guided, 1 node, 4 CPUs 2715. OMP speedup = 1.44
MPI + OMP guided, 5 nodes, 20 CPUs 535. Speedup = 7.3

LODI can also be run using both distributed and shared memory models. In this case MPI
is used for internode communication and OpenMP is used for parallel intranode
execution. This yields a speedup equal to the typical MPI speedup multiplied by the
typical OpenMP speedup, or a factor of 7.3 in the test case using 5 nodes with a total of
20 CPUs.

Conclusions

We have developed a parallel version of the Lagrangian, Monte-Carlo atmospheric
dispersion code LODI using both the shared and distributed memory models. The
version (MPI, OpenMP, or both) is selected when compiling the code. The MPI version
achieves nearly linear speedup as long as the computational load is sufficient to
overwhelm the air concentration output processing (this is nearly always the case). The
OpenMP version achieves a speedup of 1.4 for typical problems run on machines with
four CPUs per node. Additional speed could possibly be achieved by further
restructuring, for example by eliminating the dependence of pointer assignments on the
loop index through the use of sorting, but the advantages of this haven t been sufficiently
compelling to date.

Running the combined version (MPI and OpenMP) can be useful on machines with more
than one CPU per node (e.g., the ASCI Blue machine) using MPI for inter-node
communication and OpenMP for intra-node parallelism. The memory requirements
usually dictate which version is most appropriate. A problem so large that four complete
copies of the required data will not fit on a node, as required by the MPI version, may be
successfully run using the OpenMP version.

Acknowledgments This work was performed under the auspices of the U.S. Department
of Energy by the University of California, Lawrence Livermore National Laboratory
under contract No. W-7405-Eng-48.

References

Boughton, B. A., J. M. Delaurentis, and W. E. Dunn (1987). A stochastic model of

particle dispersion in the atmosphere, Boundary Layer Meteorology, 40, 147-163.

De Matteis, A. and S. Pagnutti (1995). Controlling correlations in parallel Monte Carlo,

Parallel Computing, 21, 73-84.

Durbin, P.A. (1983). Stochastic differential equations and turbulent dispersion. NASA

Reference Publication 1103, 69 pp. (Available from NTIS as N8322546.)

9

Ermak, D. L. and J. S. Nasstrom (2000). A Lagrangian stochastic diffusion method for

inhomogeneous turbulence, Atmospheric Environment, 34, 1059-1068.

Gropp, W., E. Lusk, and A. Skjellum (1994). Using MPI: Portable Parallel

Programming with the Message-Passing Interface. The MIT Press, Cambridge,
Massachusetts.

Leone, J. M. Jr,, J. S. Nasstrom, and D. Maddix (1997). A first look at the new ARAC

dispersion model. Preprint, American Nuclear Society Sixth Topical Meeting on

Emergency Preparedness and Response, San Francisco, CA, April 1997, American
Nuclear Society, Inc. La Grange Park, IL.

Luhar, A.K. and J. J. Modi (1992) Parallel processing of a random-walk model of

atmospheric dispersion, Atmospheric Environment, 26A, 3055-3059.

Nasstrom, J.S., G. Sugiyama, J.M. Leone, Jr., and D.L. Ermak (2000). A real-time

atmospheric dispersion modeling system, Preprint, Eleventh Joint Conference on the

Applications of Air Pollution Meteorology, Long Beach, CA, Jan. 9-14, 2000.
American Meteorological Society, Boston, MA, 84-89.

OpenMP Architecture Review Board (2000). OpenMP Fortran Application Program

Interface, Version 2.0 (www.openmp.org).

Percus, O. E. and M. L. Kalos (1989). Random number generators for MIMD parallel

processors. Journal of Parallel and Distributed Computing, 6, 477-497.

Sivillo, J. K., J. E. Ahllquist and Z. Toth (1997). An ensemble forecasting primer,

Weather and Forecasting, 12, 809-818.

Toth, Z., and E. Kalnay (1993). Ensemble forecasting at NMC: The generation of

perturbations. Bulletin of the American Meteorological Society, 74, 2317-2330.

Wollan, P.C. (1992). A portable random number generator for parallel computers.

Communications in Statistics- Simulation, 21, 1247-1254.

10

Figure captions

Fig. 1. Execution time versus number of processors for the distributed memory (MPI)
version of LODI.

	143895.pdf
	DISCLAIMER

